共有 3 篇符合條件的文章
婚姻對身分認同之影響的初探
顯示摘要
詳細內容
由於身分認同與省籍背景為台灣政治之主要分歧,本文探討人們是否因配偶省籍背景的異同而對其身分認同造成影響?哪些人的身分認同較容易受到其配偶省籍背景 的影響?回答這些問題得以對成人期之社會化經驗與影響做一初步的評估。本文合併 TEDS歷年全國性調查資料來評估婚姻與配偶省籍對於受訪者身分認同的可能影響,主要研究發現有:(一)受訪者之原生家庭的省籍背景影響其身分認同與其配偶省籍背景;(二)受訪者較可能與同樣省籍背景者結婚;(三)受訪者的身分認同受到其配偶省籍的影響;(四)女性的身分認同較可能受到配偶省籍背景的影響,但是高學歷女性有其獨立性,較不受到配偶省籍的影響;(五)較高教育程度的男性之身分認同較有可能受到配偶省籍背景的影響。
台灣選舉與民主化調查固定樣本(TEDS panel)之代表性分析
顯示摘要
詳細內容
「台灣選舉與民主化調查」(TEDS)執行了兩次固定樣本連續訪談,提供了非常珍貴的資料來進行台灣選民變遷的動態描述與因果 模型的建立。然而,樣本流失與訪問效應可能會對於使用固定樣本資料的研究產生影響,亦即造成內部與外部效度的問題。比較TEDS固定樣本的成功再訪與失敗 樣本後發現,樣本的流失並非隨機發生,成功與失敗樣本雖然在政治態度上沒有顯著差異,但在人口學變項上卻有程度不等的系統性差異。
TEDS 2003與2004P調查的成功樣本分為固定樣本與獨立樣本兩類,其中固定樣本是再次訪問TEDS 2001的成功樣本,而獨立樣本則是該次訪問另行獨立抽出的受訪者。由於接受學術單位長達半小時以上的面對面政治類訪問是個不尋常的經驗,受訪者在接受訪 問後應該會特別注意政治相關訊息並增加政治參與的頻率與程度。因此,這三次TEDS調查可視為一個大型的準實驗設計:固定樣本是實驗組,獨立樣本是對照 組,刺激變項則是受訪經驗。比較固定樣本與獨立樣本和觀察固定樣本在兩個時間點之間的變化後發現,訪問效應的確會改變受訪者的政治態度,並有限度地提高政 治參與的程度。綜合樣本流失與訪問效應的檢視,整體而言,TEDS固定樣本的成功樣本是偏差樣本,在使用時必須加以注意或處理。
TEDS 2003與2004P調查的成功樣本分為固定樣本與獨立樣本兩類,其中固定樣本是再次訪問TEDS 2001的成功樣本,而獨立樣本則是該次訪問另行獨立抽出的受訪者。由於接受學術單位長達半小時以上的面對面政治類訪問是個不尋常的經驗,受訪者在接受訪 問後應該會特別注意政治相關訊息並增加政治參與的頻率與程度。因此,這三次TEDS調查可視為一個大型的準實驗設計:固定樣本是實驗組,獨立樣本是對照 組,刺激變項則是受訪經驗。比較固定樣本與獨立樣本和觀察固定樣本在兩個時間點之間的變化後發現,訪問效應的確會改變受訪者的政治態度,並有限度地提高政 治參與的程度。綜合樣本流失與訪問效應的檢視,整體而言,TEDS固定樣本的成功樣本是偏差樣本,在使用時必須加以注意或處理。
Is Weighting a Routine or Something that Needs to be Justified? (in
English)(抽樣調查資料之加權:正當的處理方法或是一種迷思?)
顯示摘要
詳細內容
Survey research as a method of collecting sample data is supposed to produce sample statistics which can estimate the corresponding population parameters if the sampling design is appropriate. However, for reasons such as unit non-response, survey data is usually weighted by the institutes that collect the data or by researchers who analyse the data in order to correct or diminish the discrepancies between sample and population. Sample statistics based on weighted data are more representative of the population parameters than unweighted data in terms of some demographic characteristics.Therefore, to some extent, it seems legitimate to weight data and this manipulation has become a routine when dealing with survey data.
It is true that to weight data could be helpful, but this manipulation needs justifications. This paper therefore tries to argue that to weight data is no panacea and should not be taken for granted when considering the examples in Taiwan’s Election and Democratization Studies (TEDS) surveys. The first section discusses why weighted data is not necessarily representative of the population. As the TEDS surveys show, the turnout, the vote shares of parties, and marital status become more deviant from the population parameters after weighting the data.
If the focus is the relationships between variables, the correlations may be changed by weighting the data in bivariate or multivariate analysis. However, it is not clear whether we manufacture relationships which do not exist or if weighting the data actually helps us approximate the relationships that already exist in the population. Besides, it should be noted that to weight data set as a whole only deals with the problem of unit non-response, but does not solve the problem of item non-response.
The third section discusses why most efforts should be devoted to examining and improving questionnaires, sampling designs, and interviewerm straining and supervision, instead of simply appealing to post-weighting. If everything necessary has been tried, weighting data may be the last resort to improve the estimates. But the justifications for the selection of auxiliary variables and the methods of calculating weight factors should be provided rather than doing it without any explicit considerations. It is also important to consider whether the consequence of weighting is positive or negative.
經由抽樣設計恰當的調查研究所收集到的樣本資料應該能夠準確估計母體參數。但是因為單位無反應的問題,執行調查的單位或分析資料的學者通常會以加權的方式來 減少樣本統計量與母體參數之間的差距。加權後的資料在人口學變項上比未加權資料較為接近母體參數,因此加權似乎是一個合理處理樣本資料的做法。
然而,即使加權是可行的解決方法,也絕非萬靈丹。在加權前也必需提出事後操弄資料的理由,而不是將加權視為理所當然。本文以台灣選舉與民主化調查為例,首 先說明加權後的資料不必然較接近母體參數的原因。投票率、各政黨得票率、與婚姻狀況在加權後反而和母體參數有較大的差距。
除了單一變數分析之外,當討論的主題是變數間的關係時,加權可能增加也可能減少相關性的強度。雖然加權似乎會影響相關性,但其影響究竟是更接近真實的關 係,抑或是扭曲真正的相關性則不得而知。此外,通常對整筆資料作加權只處理了單元無反應的問題,但仍然沒有解決多變量分析一定會遇到的項目無反應問題。
不論是單一變數分析或是多變量分析,在加權之前應該先嘗試其他增加樣本代表性與提高資料品質的方法。如果沒有先投入更多時間與心力在問卷設計、抽樣設計、 訪員訓練與監督上,加權只是低成本的取巧做法。最後,假使一定要加權,必須說明與討論為什麼要加權、以哪些變數加權、如何加權、以及加權所產生的影響,而 非不加思考地將加權當作例行公事。
It is true that to weight data could be helpful, but this manipulation needs justifications. This paper therefore tries to argue that to weight data is no panacea and should not be taken for granted when considering the examples in Taiwan’s Election and Democratization Studies (TEDS) surveys. The first section discusses why weighted data is not necessarily representative of the population. As the TEDS surveys show, the turnout, the vote shares of parties, and marital status become more deviant from the population parameters after weighting the data.
If the focus is the relationships between variables, the correlations may be changed by weighting the data in bivariate or multivariate analysis. However, it is not clear whether we manufacture relationships which do not exist or if weighting the data actually helps us approximate the relationships that already exist in the population. Besides, it should be noted that to weight data set as a whole only deals with the problem of unit non-response, but does not solve the problem of item non-response.
The third section discusses why most efforts should be devoted to examining and improving questionnaires, sampling designs, and interviewerm straining and supervision, instead of simply appealing to post-weighting. If everything necessary has been tried, weighting data may be the last resort to improve the estimates. But the justifications for the selection of auxiliary variables and the methods of calculating weight factors should be provided rather than doing it without any explicit considerations. It is also important to consider whether the consequence of weighting is positive or negative.
經由抽樣設計恰當的調查研究所收集到的樣本資料應該能夠準確估計母體參數。但是因為單位無反應的問題,執行調查的單位或分析資料的學者通常會以加權的方式來 減少樣本統計量與母體參數之間的差距。加權後的資料在人口學變項上比未加權資料較為接近母體參數,因此加權似乎是一個合理處理樣本資料的做法。
然而,即使加權是可行的解決方法,也絕非萬靈丹。在加權前也必需提出事後操弄資料的理由,而不是將加權視為理所當然。本文以台灣選舉與民主化調查為例,首 先說明加權後的資料不必然較接近母體參數的原因。投票率、各政黨得票率、與婚姻狀況在加權後反而和母體參數有較大的差距。
除了單一變數分析之外,當討論的主題是變數間的關係時,加權可能增加也可能減少相關性的強度。雖然加權似乎會影響相關性,但其影響究竟是更接近真實的關 係,抑或是扭曲真正的相關性則不得而知。此外,通常對整筆資料作加權只處理了單元無反應的問題,但仍然沒有解決多變量分析一定會遇到的項目無反應問題。
不論是單一變數分析或是多變量分析,在加權之前應該先嘗試其他增加樣本代表性與提高資料品質的方法。如果沒有先投入更多時間與心力在問卷設計、抽樣設計、 訪員訓練與監督上,加權只是低成本的取巧做法。最後,假使一定要加權,必須說明與討論為什麼要加權、以哪些變數加權、如何加權、以及加權所產生的影響,而 非不加思考地將加權當作例行公事。