期刊瀏覽

共有 1 篇符合條件的文章
盛杏湲,國立政治大學政治學系博士生。
周應龍,國立政治打學政治學系教授。
選樣偏誤模型在選舉預測上的應用 文章下載
* 本篇電子檔下載次數:11
顯示摘要
詳細內容
在從事選舉預測時,研究者常面臨受訪者不告知其投票對象的問題,若僅以告知投票對象的受訪者作選舉預測,將無可避免地造成選樣偏誤的問題。本文的主要目的在 於評估選樣偏誤對於投票模型的估計所造成的影響,並且試圖藉由矯正選樣偏誤所造成的問題,得到較正確的參數估計值,並進而作更精確的選舉預測。

在本文中,我們採取Dubin與Rivers所發展出來的二變量選樣偏誤模型(bivariate selection bias model)為研究方法,為了檢視選樣偏誤模型在選舉預測上的穩定性,我們將之應用在五次不同的選舉中。結果發現在五次選舉中,未校正選樣偏誤(也就是只以願意回答投票對象者加以預測),都會造成高估自變數對應變數的影響,因為願意回答投票對象者往往是政治偏好較強或較確定的受訪者,也因此會造成選舉預測的偏誤。當我們校正選樣偏誤後,在四次選舉中都發揮了極好的效果,預測的誤差都比原本不校正選樣偏誤來得更小,且誤差都不超過1.16%,可謂相當地準確。唯有在一次選舉無法發揮校正的效果,但是即便如此,也並不會比不校正更差。我們認為這樣的效果顯示,選樣偏誤模型是一個相當可以信賴的選舉預測工具。